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ABSTRACT: The 1,2-diamine (vicinal diamine) motif is present in a number of natural products with interesting biological
activity and in many chiral molecular catalysts. The efficient and stereocontrolled synthesis of enantioenriched vicinal diamines is
still a challenge to modern chemical methodology. We report here both syn- and anti-selective asymmetric direct Mannich
reactions of N-protected aminoacetaldehydes with N-Boc-protected imines catalyzed by proline and the axially chiral amino
sulfonamide (S)-3. This organocatalytic process represents the first example of a Mannich reaction using Z- or Boc-protected
aminoacetaldehyde as a new entry of α-nitrogen functionalized aldehyde nucleophile in enamine catalysis. The obtained optically
active vicinal diamines are useful chiral synthons as exemplified by the formal synthesis of (−)-agelastatin A.

■ INTRODUCTION
Chiral vicinal diamines constitute important structural motifs
which are found in a broad variety of natural products, biologi-
cally active compounds, and chiral catalysts in various asym-
metric reactions.1 Despite their extensive utility, the develop-
ment of new methods for the efficient preparation of vicinal
diamines remains a significant and important challenge.2,3 Vari-
ous catalytic asymmetric Mannich-type reactions of carbonyl
compounds having an α-nitrogen functional group have been
employed for the synthesis of such chiral diamines;4,5 however,
the efficient method for the highly diastereoselective synthesis
of both syn- and anti-diamines from the same set of reactants by
simply replacing the catalyst has rarely been reported.4f,k,l In
enamine catalysis, while both syn- and anti-selective asymmetric
Mannich reactions of simple aliphatic aldehydes have been
developed,6 diastereo- and enantioselective synthesis of vicinal
diamines by a Mannich approach using an α-nitrogen func-
tionalized aldehyde as a nucleophile has not been reported to
date. Here, an α-nitrogen functionality of aldehyde might
promote the undesired side reaction through path b as shown
in Scheme 1,7 and to the best of our knowledge, use of amino-
acetaldehyde 1 or 2 having a common and easily removable
N-protecting group,8 such as Z (benzyloxycarbonyl) and Boc
(t-butoxycarbonyl), has not been reported so far in enamine
catalysis. In this context, we have become interested in the
possibility of asymmetric Mannich reaction of aminoacetaldehydes

1 and 2 as an efficient method for the stereocontrolled synthesis
of vicinal diamines (Scheme 2). Here we report both syn- and
anti-selective asymmetric Mannich reaction using Z- or Boc-
protected aminoacetaldehyde as new entry of α-nitrogen
functionalized aldehyde nucleophile in enamine catalysis.

■ RESULTS AND DISCUSSION
We first examined the Mannich reaction between N-Z-
protected aminoacetaldehyde 19 and N-Boc-protected imine
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Scheme 1. Amine-Catalyzed Reaction of
Aminoacetaldehydes
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derived from benzaldehyde in the presence of 30 mol % of
L-proline in acetonitrile at 0 °C.6k Fortunately, the reaction
proceeded smoothly to give the desired syn-Mannich product,
which was a syn-vicinal diamine protected by Z and Boc groups,
in virtually perfect enantioselectivity without forming by-
products (Table 1, entry 1).10 This result suggested that the

Z group was sufficient to suppress undesired side reactions
(path b in Scheme 1) caused by the nucleophilic character of
the α-nitrogen. With several other N-Boc imines, almost
optically pure syn-Mannich products were obtained in moderate
to good yield (entries 2−5). The reactive imine derived from 4-
chlorobenzaldehyde was added slowly using a syringe pump to
prevent catalyst deactivation by the undesired addition of
proline to the imine (entry 3).

We have previously designed the axially chiral amino sul-
fonamide catalyst (S)-3,11,12 which has the advantage of giving
mainly anti-products in the direct asymmetric Mannich reac-
tion, while proline and the related catalysts show the oppo-
site syn-selectivity.6k,12 To develop an efficient method for the
preparation of anti-vicinal diamines, we then examined (S)-3
as catalyst in the reaction between N-Z-protected amino-
acetaldehyde 1 and N-Boc-protected imine derived from 4-
methoxybenzaldehyde (Table 2). When the reaction was

performed in acetonitrile, the desired anti-Mannich product
was obtained in moderate yield, albeit with low diastereose-
lectivity (entry 1). After screening a variety of solvents, DMSO
was found to be the among best in terms of both yield and
stereoselectivity (entry 9).
With the optimal reaction conditions, the anti-selective and

enantioselective direct Mannich reaction of N-Z-protected amino-
acetaldehyde 1 with several other N-Boc imines was examined,
and the results are summarized in Table 3. All reactions examined
proceeded to give anti-Mannich products with excellent enantio-
selectivity (entries 1−8). The N-Boc-protected aminoacetalde-
hyde 213 was also applicable to the present Mannich reaction, thus
giving the N,N′-di-Boc protected anti-vicinal diamine (entry 9).
The absolute configuration of both syn- and anti-Mannich

products was determined by conversion to the known cyclic
ureas14 and comparison of the optical rotations (see Supporting
Information). The L-proline-catalyzed Mannich reaction of 1
was found to give a syn-vicinal diamine having (1R,2S) con-
figuration. On the other hand, the absolute configuration of an
anti-vicinal diamine obtained in the reaction catalyzed by (S)-3
was determined to be (1R,2R). Based on the observed stereo-
chemistry, transition-state models can be proposed as shown in
Figure 1. In the case of the L-proline-catalyzed reaction, the si
face of N-Boc-protected imine approaches the Si face of the domi-
nant E-s-trans-enamine (TS1) over the sterically congested E-s-
cis-enamine (TS2). While both E-s-trans- and E-s-cis-enamine

Scheme 2. Diastereo- and Enantioselective Synthesis of
Vicinal Diamines

Table 1. syn-Selective Mannich Reaction between
N-Z-Aminoacetaldehyde 1 and N-Boc Imines Catalyzed
by L-Prolinea

aThe reaction of 1 (0.375 mmol) with an N-Boc imine (0.125 mmol)
was carried out in the presence of L-proline (0.0375 mmol) in CH3CN
(1.0 mL) at 0 °C for 4 h. bIsolated yield of diastereomeric mixture.
cDetermined by 1H NMR. dThe ee of syn-product was determined by
HPLC using chiral column. eThe N-Boc imine was added using a
syringe pump over 4 h. Stirring was then continued for 3 h. fThe
Mannich adduct was isolated before reduction with NaBH4.

Table 2. anti-Selective Mannich Reaction between
N-Z-Aminoacetaldehyde 1 and a N-Boc Imine Catalyzed
by (S)-3a

entry solvent yield (%)b anti/sync ee (%)d

1 CH3CN 65 2.0/1 94
2 THF 81 1.8/1 99
3 dioxane 41 1.9/1 97
4 CH2Cl2 63 2.4/1 91
5 DMF 76 4.5/1 92
6 NMP 76 5.3/1 98
7e NMP 0 − −
8 HMPA 75 4.7/1 81
9f DMSO 90 5.4/1 97

aThe reaction of 1 (0.375 mmol) with an N-Boc imine (0.125 mmol)
was carried out in the presence of (S)-3 (0.0063 mmol) in a solvent
(250 μL) at room temperature. The N-Boc imine was added using a
syringe pump over 4 h. Stirring was then continued for 3 h. bIsolated
yield of diastereomeric mixture. cDetermined by 1H NMR. dThe ee of
anti-product was determined by HPLC using chiral column. eThe
reaction was performed at 0 °C. fUse of 375 μL of DMSO.
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might be formed in the reaction catalyzed by (S)-3, the reaction of
E-s-cis-enamine with the activated N-Boc-protected imine at the
appropriate position (TS4) is faster than that of E-s-trans-
enamine with N-Boc-protected imine (TS3), giving the anti-
vicinal diamine predominantly.11,12

DFT calculations at the B3LYP/6-31G* level were also done
to address the observed stereoselectivities.15 The most favor-
able transition state is in accord with our previously mentioned
transition-state model TS4 for the Mannich reaction of 1
catalyzed by (S)-3 (Figure 2).16

To demonstrate the synthetic utility of this asymmetric
transformation, the optically enriched anti-Mannich product was
converted to the corresponding α,β-diamino ester and β-lactam,
which are key structural motifs in many biologically active
compounds (Scheme 3).1b Thus, the anti-Mannich product,
which was obtained from the reaction between 1 and N-
Boc-protected imine derived from benzaldehyde, was converted to
the protected anti-α,β-diamino ester 4 by oxidation with NaClO2
followed by esterification with TMSCHN2 (60% yield over three
steps). Subsequent N-Boc deprotection and treatment of the
resulting β-amino ester 5 with TMSCl, triethylamine, and then

Table 3. anti-Selective Mannich Reaction between
N-Protected Aminoacetaldehydes and N-Boc Imines
Catalyzed by (S)-3a

aThe reaction of an N-protected aminoacetaldehyde (0.375 mmol)
with an N-Boc imine (0.125 mmol) was carried out in the presence of
(S)-3 (0.0063 mmol) in DMSO (250 μL) at room temperature. The
N-Boc imine was added using a syringe pump over 4 h. Stirring was
then continued for 3 h. bIsolated yield of diastereomeric mixture.
cDetermined by 1H NMR. dThe ee of anti-product was determined by
HPLC using chiral column. eUse of 375 μL of DMSO. fThe reaction
was performed at 50 °C.

Figure 1. Transition-state models for the asymmetric Mannich
reaction catalyzed by L-proline and (S)-3.

Figure 2. B3LYP/6-31G* optimized transition-state structure of the
reaction.
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t-BuMgCl gave β-lactam 6 (51% yield over two steps).17 In
addition, the anti-Mannich product was readily converted to α,β,γ-
triamine 7 with three different protecting groups by reductive
amination (Scheme 4).

Further synthetic utility of the present Mannich reaction was
successfully demonstrated in the formal synthesis of a marine

alkaloid, (−)-agelastatin A,18 which has a potent antitumor
activity, as shown in Scheme 5. Mannich product 8 was
converted to diene 9 by Nozaki−Hiyama−Takai−Kishi coupl-
ing with (E)-1-bromoprop-1-ene.19 After deprotection of the
Boc group of 9, amide 11 was formed under standard coupling
conditions. Treatment of 11 with Hoveyda−Grubbs second-
generation catalyst20 cleanly afforded cyclopentene 12,21 which
was converted in one pot to cyclopentanone 14 by 2-iodoxy-
benzoic acid (IBX) oxidation and the subsequent intra-
molecular conjugate addition of the pyrrole moiety.18g Since 14
was an intermediate in previous total synthesis of (−)-agelastatin
A by Ichikawa’s group,18g this work contributes to its formal
synthesis.
In summary, we have developed a diastereo- and enantio-

selective direct Mannich reaction of N-protected amino-
acetaldehydes with N-Boc-protected imines catalyzed by
proline and the axially chiral amino sulfonamide (S)-3. This
organocatalytic process represents the first example of Mannich
reaction using Z or Boc-protected aminoacetaldehyde as new
entry of α-nitrogen functionalized aldehyde nucleophile in
enamine catalysis. The obtained optically active vicinal diamines
are useful chiral synthons as exemplified by the formal synthesis
of (−)-agelastatin A. Further investigations to expand the scope
of this and related reactions are currently underway.
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